INT Rescooch /\l"/””'[
o e e, IS RR-N9=-227
w= Jilv TUNY
-
< ! N
' S x“’&#:v
0 \Walid Najja Lo LA
< ca- Luc dezoun
Yo ! B N N
(S Ayl Ll et

Parallelism in the Discrete~Event
Simulation Algorithm

« g

INFORMATTON

SCTEA '/‘.S/ — [ST
INSTITUTE //1/ roogneral FERR Y O B Gl 22

89 9 28 08 8

Unclassified

SECURITY CLASSIFI {ON H
REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DGSTRIBUTIONIAVAILABIUJTY OF REPORT
This document is approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
ISI/RR-89-227 1 ememee——
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. . . If applicable))
USC/Information Sciences Institute 07 app Office of Naval Research
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
4676 Admiralty Way . .
0 _ < 8§00 N. Quincy Street
Marina del Rey, CA 90292-6€95 Arlington, VA 22217
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
N00014-87-K-0022 CCR-8603772
SDIO NSF
8¢. ADDORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Strategic Defense Initiative Organization PROGRAM PROJECT TASK WORK UNIT
Otfice of the Secretary of Defense (over) ELEMENT NO. [NO. NO. ACCESSION NO.

The Pentagon, Washington, DC 2030f | —=—eeee | ————— | o= | -

11 TITLE (Include Security Classification)

Parallelism in the Discrete—Event Simulation Algorithm (Unclassified)

12. PERSONAL AUTHOR(S) . ,)
Najjar, Walid; Jezouin, Jean~Luc; Gaudiot, Jean-Luc

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) I1S. PAGE COUNT 16
Research Report FROM TO 1989, July
— — e -

16. SUPPLEMENTARY NOTATION
Rassul Ayani of the Royal Institute of Technology, Sweden, recently wrote his doctoral thesis on the
scheme proposed in this paper and improved on it. Interested readers can contact him directly.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP ,
09 02 discrete-event simulation, parallelism

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
' [

With the increasing complexity of VL8 circuits, simulation on a digital computer system has become a
primary means of low-cost testing of new designs. However, a detailed behavioral simulation can be
highly expensive in terms of computation loads. Simulation time can be reduced by distributing the
problem over several processors. Indeed, the availability of commercial multiprocessors gives a new im-
portance to parallel and distributed simulation. This report surveys the techniques that have been pro-
posed to deal with this problem and then presents a new scheme based on a consistent description of the
system to be simulated, which allows a maximum exploitation of the parallelism inherent in the system.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
] UNCLASSIFIEDAUNLIMITED SAME AS RPT. [JDTIC USERS Unclassified
223 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Ares Code) | 22¢. OFFICE SYMBOL
Victor Brown Sheila Coyazo 213/822-1511
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are oosolete. "
Unclassified

e

Unclassified
SECURITY CLABSIFICATION OF THIS PASE

Se. (eonunued?

National Scrence Foundation
IR0 (3 Street NW
Washington, DC 20350

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

ISI Research Report
ISI/RR-89-227
July 1989

L LOVTIES

f(,;zi\'elrsil_\' ! \ :S ‘i\;i
. . of Southern | 5, 5
Walid Najjar Cotfornia | 2 Ti i

Jean-Luc Jezouin
Jean-Luc Gaudiot

SR Parallelism in the Discrete—Event
Simulation Algorithm

S risteinvtion/

et

L oseriientiity Codes
T syl and/or

Jiet . Opelal

>
[—

INFORMATION

SCIENCES |
INSTITUTE 203/822-1511

4676 Admiralyy Way/Marina del Rey/California 90.292-6695

This research Is supported by the Strategic Defense Initiative Office under Office of Naval Research Contract No. N00014-87-K-0022.
and by the National Science Foundation under Grant No. CCR-8603772. Views and conclusions contained in this report are the
authors’ and should not be interpreted as representing the official opinion or policy of SDIO. ONR, NSF, or the U. S. Government. No
official Government endorsement should be Inferred.

1

1 Introduction!

The design and prototyping of more complex and powerful computer sys-
tems relies heavily on testing of new designs by simulation. Furthermore,
the relatively low-cost availability of computing equipment has introduced
simulation into many diverse areas such as agriculture, biology, and econo-
metrics, in addition to engineering and scientific research. The advent of
operational parallel and distributed architectures has increased the interest
in distributing the execution of simulation programs over several processors
in order to reduce their execution time.

Traditionally, simulation algorithms have been identified as either time-
driven or event-driven. The time-driven model reflects all the variations
in the system being modeled, provided a sufficiently low time granularity.
It is very efficient in modeling continuous change; but its use is impractical
however in modeling systems where change is by discrete steps. Event-driven
simulation, on the other hand, is efficient in modeling the asynchronous
occurrence of discrete events in time. For such systems, it provides a good
modeling accuracy and a higher execution efficiency.

However, the discrete-event simulation algorithm is essentially a highly
sequential algorithm that relies on the centralized notion of an event queue
and a simulation time. Distributing these over several processors can imply
a large overhead to ensure the sequential consistency of the simulation. A
distributed simulation is sequentially consistent when events occur in the
same order as in a sequential version.

The scheme proposed in this report, while maintaining a central event
queue and a common simulation time, allows the concurrent execution of
events over several processors and guarantees a sequentially consistent simu-
lation. The possible concurrency among events is detected at compile time,
and the run-time overhead is kept to a minimum.

2 Simulation Models

2.1 Event- and Time-Driven Simulation

The time- and event-driven simulations are essentially equivalent algorithms.
Both have the same modeling power. The main difference between them is
in their respective expected performance for a given problem.

'Part of the work described in this report has appeared in [1] and [2).

In the time-driven model, the simulation time is moved up by a constant
amount at each iteration of the simulation algorithm. At each step, the
simulator proceeds to the “next instant.” A geaeric algorithm for time-
driven simulation is as follows:

repeat

t=t+ At

foreach element in the system do
evaluate new state

post global state changes

until (End-of-Simulation)

All elements of the system are evaluated at each iteration, regardless of
their activity status. This approach is highly efficient if, on the average,
a large fracticn of the system elements are active during any simulation
time interval, and every time interval witnesses changes in the state of the
system. Provided a sufficiently small time interval, this approach can model,
with high fidelity, systems with time-continuous variables (such as electric
voltages in circuit simulation).

In the event-driver. simulation model, only the values of elements that
have actually changed are updated. The simulation time is moved up at
each step to the “next event” time. All “future” events are maintained in
a simulation time ordered list. A generic event-driven algorithm can be
described as follows:

repeat

tnezt == time(next-event)

foreach event posted at ty.z:
evaluate

schedule any new events generated
until (End-of-Simulation)

All events scheduled at the current simulation tirae are retrieved and eval-
uated; newly generated events are scheduled on the event list, and the sim-
ulation time is advanced to the time of the next scheduled event. This
approach is particularly suited for modeling discrete systems where state
changes occur in discrcte increments.

2.2 Concurrency in Simulation Models

In essence, a simulator runs an algorithmic description of a system. The
concurrency delivered by the execution of this algorithm is several fold:

1. Element concurrency exists when several elements of the system can
be evaluated at the same time. It is specific to the time-driven mcdel,
where all elements are evaluated at every time step. For instance,
when several gates of a complex logic circuit receive all their inputs
from the same outside elements, the state of these gates can always
be evaluated concurrently without a risk of dependency. An example
of such an implementation is found in the IBM Yorktown Simulation
Engine (3,4,5].

2. Time concurrencyresults from the simultaneous occurrence of changes
within the system. In other words, it exists when several unrelated
events are scheduled to happen at the same simulation time, in an
event-driven environment. Such a feature can be found in both the
Daisy [6] and ZYCAD [7] machines.

3. Control concurrency consists of executing (in a pipelined fashion) the
tasks that are at the core of the event-driven model: Retrieve, Evalu-

ate, and Schedule events. It has been described in {8] and implemented
in [6].

4. Object concurrency means that a set of logically related activities can
be grouped in an object. Often these objects exhibit a low degree of
interaction and thus can be evalnated in parallel with little synchro-
nization overhead.

2.3 Distributed Simulation

The aim of distributed simulation is to map the simulation model over sev-
eral loosely coupled processors, where objects execute locally and exchange
information in the form of time-stamped messages. Two main paradigms
have been proposed that implement distributed discrete-event simulation:
the Network Paradigm [9,10] and the Time-Warp Mechanism [11,12]; both
are asynchronous algorithms.

The Network Paradigm. This model was proposed independently by
Peacock et al. {9,13] and Chandy et al. [14,10]. It can be described as a
consgervative asynchronous mechanism. It is conservative because it assumes
that synchronization between any two events may be needed until proof that
it is not required.

Simulation is modeled as a directed graph, where arcs represent messages
passing among objects and carry a monotonic, non-decreasing, simulation-

time- ordered sequence of events. Every node has a local simulation time,
otherwise called nezt event time. Each input link in a node corresponds a
link time, which is the value of the time stamp of the last message received
on that link. The next event in a node is chosen as the minimum link time
event.

This method suffers from the possible introduction of deadlock situa-
tions. Several schemes have been proposed as a remedy to this problem:

e The Link Time Algorithm [9] reduces the probability of a deadlock.

o The Blocking Table Algorithm [13] allows the distributed detection of
deadlocks, however, with a time complexity O(n®).

e The Controller Method [14] relies on a central controller that runs a
deadlock detection algorithm and initiates r2covery, at the expense of
a potential bottleneck.

The Time-Warp Mechanism. This mechanism, proposed by Jeffer-
son and Sowizral [11], is an asynchronous optimistic mechanism. It is opti-
mistic because it assumes (hopes for) independency among events, and im-
plements a rollback and undo when these conditions are not verified. Essen-
tially, it relaxes the condition of monotonic, non-decreasing, time-stamped
messages along arcs, allowing out-of-order arrival of events between two logic
processes. This method suffers from two main drawbacks: a potential for
domino effect in rollbacks, and a large space overhead necessary to maintain
the past history of each process.

Gafni [12] proposed a scheme that reduces the amount of space over-
head by implementing a garbage collection mechanism. Lavenberg et al.
[15] present an analytical evaluation of such a mechanism for two processes
mapped onto two processors. Their results show *hat a good speed-up can
be obtained when the probability of interaction among processes is low (0.05
or less). The performance degrades for larger probabilities.

3 Detection of Parallelism

The discrete-event simulation algorithm is essentially sequential. The Net-
work Paradigm and the Time-Warp Mechanism aim at speeding up the
simulation by distributing the central event queue over a network of pro-
cessors. The methodology described in this report aims at detecting vhe
possible concurrency among events in a central event queue and thereby
exploiting any potentiul parallelism.

3.1 System Modeling

Let £ be the model of a system under simulation. It can be decomposed
into a set of independent subsystems, or disjoint objects.! ¥ can be seen as
the set of state variables describing a system and each o; as a subset of X.

Vi#j,0iNa; =0
{ Uioi=% (n21))

Equation 1 states that the partitions of ¥ are non-overlapping. Let S(X)
be the set of all possible states of T, and, for each subsystem (object) oy, let
S(0;) be the set of all possible states of ;. Then we can express the above
partitioning as a concatenation of states

S(%) = (S(a1),5(a2),...,S(on))

An event in the system can therefore be defined as a state transition over
some subset ¢; of £ occurring at time t. An event in o; at time t; can be
described as

e(o,t;) = {S(a,-) =8 t<t;}A{S(o))=s2 t>¢t;} s1#s2 (2)

The evaluation of an event can result in the creation of other events
within the same subsystem or in other subsystems. These events are said to
be induced by the event that was evaluated. The state of a subsystem can
therefore be affected by events in one or more other subsystems. A relation
of causality or functional depender ce, between any two subsystems can be

defined by

Definition 1 A subsystem o; 1> functionally dependent wren a snbays-
tem o; iff some event e(0;,t) can induce an event €'(0;,t') in finite time.

This relation is denoted by o; = ;. From this definition we can model a
system with an Object-Dependency Graph, which is a directed graph G =
(V, E), where

V={cZX}

is the set of nodes, and

E= {(0’.‘,0,') | o = 05 0;C 2, o; C 2}

'In this report the terms subsystem and object will be used interchangeably.

gl

g3

L o

Figure 1: Modeling a simple digital circuit.

dl
A\
A a3
C

"

Figure 2: Object-dependency graph.

is the set of edges.

Figures 1 and 2 show the example of a simple digital circuit, its parti-
tioning into a set of objects A, B, C, and D, and the corresponding object
dependency graph.

Based on the relat.on of functional dependence, we can define a direc-
tional distance between two objects as

Definition 2 6(0;,0;) = minimum possible delay between any event e(a;, t)
and an induced event ¢'(o;,t').

In other words, §(0;,0;) is the lower bound on the possible delay between
any event in o; and its possible effect in ¢;. If §(0i,0,) = +oo then no event
in ¢ can induce an event in o0;.

In Figure 1, the directional distances d1, d2, and d3 correspond to the
respective delays in gates 1, 2, and 3.

t

Figure 3: Possible event concurrency.

3.2 Scheduling Relaticns

Two subsystems are totally independent when
6(o,0') =6(o',0) = +o0

In other words, neither one can influence the other. Therefore, any event
occurring in one of these objects cannot influence the evaluation of any event
in the other. Such two events can obviously be evaluated concurrently. This
remark enables us to define a relation of strict independence (¥) between
two events:

e(o,t) S e(o',t") = (0 = 'Y A-(0 = 0)

This means that two events are strictly independent if and only if the
respective subsystems to which they belong are functionally independent.
Verifying this relation reduces to finding the non-connected components of
the model graph G. Even though all the concurrency among events will
be detected across independent subsystemas, this relaticn will miss most of
the parallelism resulting from pipelining of events along the same (possibly
cyclical) path of the graph.

Indeed, when two events e and €' are generated inside two subsystems o
and o' such that ¢ = of, their times of occurrence can be compatible with
a concurrent evaluation.

Figure 3 shows an event history with e(o,t) and €'(o’,t') where (t' —t) <
6{a,0'). In this case, all events (e.g., a and b) that can possibly be induced by
the evaluation of e will fall in the future of ¢’ and cannot affect its evaluation.
Therefore, events e and e’ could be evaluated concurrently without affecting
the correctness of the simulation.

In general, e(o,t) and €'(o’,t') can be evaluated concurrently if and only
if the result of evaluating e have consequences, i.e., induces events, in o'

later than ¢'. Since §(0,0') is defined as the minimum delay between the two
subsystems, the following inequality must hold for the concurrent evaluaticn
to be correct:

(t' —t) < §(o,0")

Because of a possible cycle in the dependency graph, the reciprocal must
also hold. We define, therefore, a relation of generalized independence (R)
between two events (object concurrency):

e(o,t) R ()=t —t' < §(c', o)At -t < §(a,0")]

Therefore, determining the possible concurrency of two events amounts
to comparing the interval of time between their respective occurrences to
the time distance § between the two subsystems to which they belong. R
is not an equivalence relation since it is not transitive. This implies that
deciding whether several events can be evaluated concurrently at a given
time requires the examination all pairs of candidates.

The concurrency among events is not limited to events that are time
consecutive. At any simulation time t,,,, the content of the event queue
can be described by a time-ordered sequence of events, where the 1** event
at simulation time t; is denoted by e;(¢;):

Qlteim) = (er(t1), ea(ta), .. ei(ti), .. enltn)) tam <ti <ty ¥1<j

In the sequence Q(tsim), the set of independent (and therefore concurrent)
events is defined by

C\t_,,'m) = {e,-(t,-) l ¥Yy<i e R ej} (3)

The definition of the set C(t4,,) states that any event with an associated
simulation time t; > t,,, can be evaluated at simulation time t,;p, iff this
event is independent of all the events preceding it in the sequence Q(¢yim).
Obviously, the first element in the Q(t,im) sequence is also the first element
in C(tsm). Note that, once an event is in C(t,,), it stays a member of the
set until it is evaluated. In other words,

e(t) € C(to), :>e(t) € C(tl) Vip <t; <t

Therefore, C(to) constitutes the set of independent events that can be
evaluated concurrently at any simulation time t > tg.

3.3 Implementation Considerations

In this section we describe a scheme for the run-time detection of concur-
rency among events and the parallel execution of these events. The imple-
mentation of such a scheme relies on building a Delay Table D, which is the
description of the object-dependency graph for the system under simulation.

D is an n x n array, where n is the number of objects. The delay values are
defined as follows:

Dl gl = { g(a.,w) ::j)

The diagonal of this matrix is null, since there is no delay between a state
transition in a subsystem and its effects on that subsystem. This prevents
two events pertaining to the same subsystem from being evaluated concur-
rently. If the object-dependency graph is acyclic, D is an upper triangular
matrix, the values in the lower half being equal to infinity.

The Delay Table is created at compile time by an analysis of the object-
dependency graph, which yields the lower bounds on thejdelays between
dependent objects in the system. The set of concurrent events at simulation
time ¢ can be built at run-time from the Delay Table and the event queue.

On a multiprocessor with m processors, one is dedicated to running the
event queue management tasks, allowing up to m — 1 events to be evaluated
concurrently. Hence the event-driven simulation algorithm becomes

for every simulation time t;

repeat
determine the set of independent events C(t);
schedule the execution of up to (m — 1) events from C(t);
update the simulation time to that of the new head of the queue;
insert any new events in the queue;

until (End-of-Simulation)

Note that this algorithm guarantees a progress rate of the simulation
at - -. equai to that of a sequential simulation. The head of the queue is
~1 ;. a member of C(t) and is evaluated at every iteration. Therefore, the
. .w.ation time is always updated to at least that of the next event, as in
the ~ v :ntial algorithm.

4 Conclusions

We have examined in this report the issue of simulation in a parallel environ-
ment. Although the problem is apparently centered around the centralized
notion of time, several types of concurrency can be found in simulation
models. Event-driven simulation has been shown to provide time, object, or
control concurrency.

Using a formal description of a system under simulation, we were able
to define relations of functional dependence among objects in the system, as
well as two relations of strict and generalized independence between events.
A compilation strategy has been described, based on these relations, that
allows the run-time detection of parallelism in the event-driven simulation
model. This strategy has been shown to preserve sequential consistency
among events.

Directions for future research include evaluation of the distribution of the
degree of parallelism that can be obtained using this method in applications
such as switch-level simulation of logic circuits and the stochastic simulation
of network of queues. Another direction is the implementation of a parallel
simulation environment on a shared memory multiprocessor.

References

[1] W. Najjar, J-L. Jezouin, and J-L. Gaudiot. Parallel execution of
discrete-event simulation. In Proceedings of the 1987 International Con-
ference on Computer Design, October 1987.

[2] W.Najjar, J-L. Jezouin, and J-L. Gaudiot. Parallel discrete-event simu-
lation on multiprocessors. IEEE Design and Test, 4(6):41-44, December
1987.

(3] G. Kronstadt and G. Pfister. Software support for the Yorktown Sim-

ulation Engine. In 19** Design Automation Conference, pages 60-64,
1982.

[4] G. Pfister. The Yorktown simulation engine: Introduction. In 19'
Design Automation Conference, pages 51-54, 1982,

[5] M.R. Denneau. The Yorktown simulation engine. In 19'* Design Au-
tomation Conference, pages 55-59, 1982.

10

6]

[10]

11]

(12]

[13]

(14]

[15]

W.G. Paseman and G. Catlin. Hardware Acceleration of Logic Simula-
tion Using a Data Flow Architecture. Technical Report, Daisy System
Corporation, 1984.

Zycad LE-001 and LE-002 Logic Evaluator - Product description. ZY-
CAD Corporation, 1982.

M. Abramovici, Y.H. Levendel, and P.R. Menon. A logic simulation
machine. In 19** Design Automation Conference, pages 65-73, March
1982.

J.K. Peacock, W. Wong, and E. Manning. A distributed approach
to queueing network simulation. In Proceedings, IEEE 1979 Winter
Simulation Conference, pages 399-406, 1979.

K.M. Chandy and J. Misra. Asynchronous distributed simulation via
a sequence of parallel computations. Communications of the ACM,
24(11):198-206, April 1981.

D. Jefferson and H. Sowizral. Fast concurrent simulation using the time-
warp mechanism. In Proceedings, SCS Distributed Simulation Confer-
ence, January 1985.

A. Gafni. Space Management and Cancellation for Time Warp. PhD
thesis, University of Southern California, December 1985.

J.K. Peacock, W. Wong, and E. Manning. Distributed simulation using
a network of processors. Computer Networks, 44-56, February 1979.

K.M. Chandy, J. Misra, and V. Holmes. Distributed simulation of
networks. Computer Networks, 3:105-113, 1979.

S. Lavenberg, R. Muntz, and B. Samadi. Performance analysis of a
rollback method for distributed simulation. In 9** International Sym-
postum on Computer Performance Modeling, Measurement, and Eval-
uation, pages 117-132, May 1983.

11

